If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3n+n^2=162
We move all terms to the left:
3n+n^2-(162)=0
a = 1; b = 3; c = -162;
Δ = b2-4ac
Δ = 32-4·1·(-162)
Δ = 657
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{657}=\sqrt{9*73}=\sqrt{9}*\sqrt{73}=3\sqrt{73}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-3\sqrt{73}}{2*1}=\frac{-3-3\sqrt{73}}{2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+3\sqrt{73}}{2*1}=\frac{-3+3\sqrt{73}}{2} $
| 200-0.4x-x=80 | | 17-x-x=3 | | K-29=10-2k | | k/3=7.5 | | 2(3^x+4)=56 | | X+4x-9=8x+6 | | y-17-y=3 | | (2x+29)=(6x-9) | | (3n+4)(5n+2)+5(n+7)=0 | | 33=7y-9 | | 5.1=7.1x | | 6=w/4-1 | | -4(w+1)=32 | | -37=3-5w | | 4(3+2x)=73 | | 10=3v1 | | 8z=3z=30 | | 5(y-3)-3y=-19 | | -5=3v+4(v+4) | | 12=2u+2(u-6) | | 12=2u+2(u-6 | | (8x-9)=5x=(3x+6) | | 7u-2u=3u=22 | | 103-y=186 | | 221-v=79 | | 221=-v=79 | | 3(2x+1)=5x+11-x | | 219=-u+279 | | 283=28-u | | 2i+8-14=61 | | 6w-23+w/20=92 | | 4e=(e+2) |